A decision procedure for proving symbolic equivalence

V. Cheval, H. Comon-Lundh, S. Delaune
LSV, Project SECSI
19 June 2010

Context

Automatic procedure for proving security properties on protocol

Context

Automatic procedure for proving security properties on protocol

Trace properties

- Examples : simple secret, authentication, ...
- All traces of a protocol has to satisfy a certain property.
- Lot of previous works on those security properties.
- Tools already exists (example : ProVerif, Maude-NPA,...)

Context

Automatic procedure for proving security properties on protocol

Trace properties

- Examples : simple secret, authentication, ...
- All traces of a protocol has to satisfy a certain property.
- Lot of previous works on those security properties.
- Tools already exists (example : ProVerif, Maude-NPA,...)

Equivalence properties

- Examples : strong secret, dictionnary attacks, anonymity, ...
- Express the indistinguishability of two protocols
- Theoretical results (Baudet, Chevalier, Rusinowitch, ...)
- No general tool implemented

Security properties example : Anonymity

$$
\begin{array}{lrl}
0 . & A \longrightarrow B: & \operatorname{aenc}\left(\left\langle N_{a}, \mathrm{p}(A)\right\rangle, \mathrm{p}(B)\right) \\
\text { 1. } & B \longrightarrow A: & \operatorname{aenc}\left(\left\langle N_{a},\left\langle N_{b}, \mathrm{p}(B)\right\rangle\right\rangle, \mathrm{p}(A)\right)
\end{array}
$$

Security properties example : Anonymity

$$
\begin{array}{llr}
0 . & A \longrightarrow B: & \operatorname{aenc}\left(\left\langle N_{a}, \mathrm{p}(A)\right\rangle, \mathrm{p}(B)\right) \\
\text { 1. } & B \longrightarrow A: & \operatorname{aenc}\left(\left\langle N_{a},\left\langle N_{b}, \mathrm{p}(B)\right\rangle\right\rangle, \mathrm{p}(A)\right)
\end{array}
$$

Security property : Anonymity

The identity of the principal A cannot be revealed to the attacker.

Security properties example : Anonymity

$$
\begin{array}{llr}
0 . & A \longrightarrow B: & \operatorname{aenc}\left(\left\langle N_{a}, \mathrm{p}(A)\right\rangle, \mathrm{p}(B)\right) \\
\text { 1. } & B \longrightarrow A: & \operatorname{aenc}\left(\left\langle N_{a},\left\langle N_{b}, \mathrm{p}(B)\right\rangle\right\rangle, \mathrm{p}(A)\right)
\end{array}
$$

Security property : Anonymity

The identity of the principal A cannot be revealed to the attacker.

Formally

$$
\begin{gathered}
c(\mathrm{p}(a)) \cdot c\left(\mathrm{p}\left(a^{\prime}\right)\right) \cdot c(\mathrm{p}(b))\left|P_{A}(a, b)\right| P_{B}(b, a) \\
\approx(\mathrm{p}(a)) \cdot c\left(\mathrm{p}\left(a^{\prime}\right)\right) \cdot c(\mathrm{p}(b))\left|P_{A}\left(a^{\prime}, b\right)\right| P_{B}\left(b, a^{\prime}\right)
\end{gathered}
$$

Previous works

Huttel (2002)

- Only spi-calculus (fixed primitives)
- Untractable implementation (multi-exponential complexity)
- Doesn't handle trace properties.

Blanchet, Abadi, Fournet (2008) : ProVerif

- Unbounded number of sessions
- Diff-equivalence: Observational equivalence between two process with the same structure but different messages.
- Very efficient
- Possibility of false attacks. Doesn't always terminate

Previous works

Cortier, Delaune (2009) + Baudet (2005) or Chevalier,Rusinowitch (2009)

- Bounded number of sessions
- Infinitely many traces are represented by constraint systems
- Observational equivalence of processes \Leftrightarrow symbolic equivalence of constraint systems
- Algorithm for the symbolic equivalence of positive constraint systems when the equational theory is given by a subterm convergent rewriting system.

Outline

(1) Formalism

- Constraint Systems
- Equivalence
(2) The rules

- Definition and example - How to use them ?

(3) Termination, Completeness and Soundness

Dolev-Yao

Rewrite rules

- $\operatorname{dec}(\operatorname{enc}(x, y), y) \rightarrow x$
- $\operatorname{adec}(\operatorname{aenc}(x, \mathrm{p}(y)), y) \rightarrow x$
- check $(\operatorname{sign}(x, y), \mathrm{p}(y)) \rightarrow x$
- $\pi_{1}(\langle x, y\rangle) \rightarrow x$ and $\pi_{2}(\langle x, y\rangle) \rightarrow y$

Constraint system

$$
\begin{array}{lrr}
0 . & A \longrightarrow B: & \operatorname{aenc}\left(\left\langle N_{\mathrm{a}}, \mathrm{p}(A)\right\rangle, \mathrm{p}(B)\right) \\
\text { 1. } & B \longrightarrow A: & \operatorname{aenc}\left(\left\langle N_{a}, N_{b}, \mathrm{p}(B)\right\rangle, \mathrm{p}(A)\right)
\end{array}
$$

Constraint system

$$
\begin{array}{ll}
\mathrm{p}(A), \mathrm{p}(B),\left\{\left\langle N_{a}, \mathrm{p}(A)\right\rangle\right\}_{\mathrm{p}(B)} & \vdash\{\langle x, y\rangle\}_{\mathrm{p}(B)} \\
\mathrm{p}(B), \mathrm{p}(B),\left\{\left\langle N_{\mathrm{a}}, \mathrm{p}(A)\right\rangle\right\}_{\mathrm{p}(B)},\left\{\left\langle x, N_{b}, \mathrm{p}(B)\right\rangle\right\}_{y} \vdash\left\{\left\langle N_{\mathrm{a}}, z, \mathrm{p}(B)\right\rangle\right\}_{\mathrm{p}(A)}
\end{array}
$$

Solution of a constraint system

$$
\begin{array}{ll}
\mathrm{p}(A), \mathrm{p}(B),\left\{\left\langle N_{\mathrm{a}}, \mathrm{p}(A)\right\rangle\right\}_{\mathrm{p}(B)} & \vdash\{\langle x, y\rangle\}_{\mathrm{p}(B)} \\
\mathrm{p}(A), \mathrm{p}(B),\left\{\left\langle N_{\mathrm{a}}, \mathrm{p}(A)\right\rangle\right\}_{\mathrm{p}(B)},\left\{\left\langle x, N_{b}, \mathrm{p}(B)\right\rangle\right\}_{y} \vdash\left\{\left\langle N_{\mathrm{a}}, z, \mathrm{p}(B)\right\rangle\right\}_{\mathrm{p}(A)}
\end{array}
$$

Solution of a constraint system

A solution

- $\sigma=\left\{x \mapsto N_{a} ; y \mapsto \mathrm{p}(a) ; z \mapsto N_{b}\right\}$, and
- $\theta=\left\{X_{1} \mapsto a x_{3} ; X_{2} \mapsto a x_{4}\right\}$.

Outline

(1) Formalism

- Constraint Systems
- Equivalence
(2) The rules

- Definition and example - How to use them ?

(3) Termination, Completeness and Soundness

Static equivalence

Static equivalence : $\phi \sim \phi^{\prime}$

Given two sequences of terms ϕ, ϕ^{\prime}, the intruder cannot distinguish them.

- $\forall\left(\xi, \xi^{\prime}\right) \in \Pi^{2}, \xi \phi \downarrow=\xi^{\prime} \phi \downarrow \Leftrightarrow \xi \phi^{\prime} \downarrow=\xi^{\prime} \phi^{\prime} \downarrow$
- $\forall \xi \in \Pi, \xi \phi \downarrow$ is a message $\Leftrightarrow \xi \phi^{\prime} \downarrow$ is a message

Static equivalence

Static equivalence : $\phi \sim \phi^{\prime}$

Given two sequences of terms ϕ, ϕ^{\prime}, the intruder cannot distinguish them.

- $\forall\left(\xi, \xi^{\prime}\right) \in \Pi^{2}, \xi \phi \downarrow=\xi^{\prime} \phi \downarrow \Leftrightarrow \xi \phi^{\prime} \downarrow=\xi^{\prime} \phi^{\prime} \downarrow$
- $\forall \xi \in \Pi, \xi \phi \downarrow$ is a message $\Leftrightarrow \xi \phi^{\prime} \downarrow$ is a message

Example 1

- $\phi_{1}=a, \operatorname{enc}(a, b), b$
- $\phi_{2}=a$, enc $(c, b), b$

Static equivalence

Static equivalence : $\phi \sim \phi^{\prime}$

Given two sequences of terms ϕ, ϕ^{\prime}, the intruder cannot distinguish them.

- $\forall\left(\xi, \xi^{\prime}\right) \in \Pi^{2}, \xi \phi \downarrow=\xi^{\prime} \phi \downarrow \Leftrightarrow \xi \phi^{\prime} \downarrow=\xi^{\prime} \phi^{\prime} \downarrow$
- $\forall \xi \in \Pi, \xi \phi \downarrow$ is a message $\Leftrightarrow \xi \phi^{\prime} \downarrow$ is a message

Example 1

- $\phi_{1}=a, \operatorname{enc}(a, b), b$
- $\phi_{2}=a$, enc $(c, b), b$

Example 2

- $\phi_{1}=a, \operatorname{enc}(a, b)$
- $\phi_{2}=a$, enc (c, b)

Symbolic equivalence

$C \approx_{s} C^{\prime}$

Given two constraint systems, any two associated traces are staticly equivalent.

- for all $(\theta, \sigma) \in \operatorname{Sol}(C)$, there exists σ^{\prime} such that $\left(\theta, \sigma^{\prime}\right) \in \operatorname{Sol}\left(C^{\prime}\right)$ and $\phi \sigma \sim \phi^{\prime} \sigma^{\prime}$
- for all $\left(\theta, \sigma^{\prime}\right) \in \operatorname{Sol}\left(C^{\prime}\right)$, there exists σ such that $(\theta, \sigma) \in \operatorname{Sol}(C)$, and $\phi \sigma \sim \phi^{\prime} \sigma^{\prime}$

Formalism
The rules
Termination, Completeness and Soundness

Constraint Systems

Equivalence

Example 1

$\begin{array}{ll}A, B & \vdash x \\ A, B, \operatorname{enc}(A, K) & \vdash \operatorname{enc}(A, K)\end{array}$

Example 1

$$
\begin{array}{ll}
A, B & \vdash x \\
A, B, \operatorname{enc}(x, K) & \vdash \operatorname{enc}(A, K)
\end{array}
$$

$$
\begin{array}{ll}
A, B & \vdash x \\
A, B, \operatorname{enc}(A, K) & \vdash \operatorname{enc}(A, K)
\end{array}
$$

Non-equivalent

The substitution of recipe $\theta=\left\{X_{1} \mapsto a x_{2}, X_{2} \mapsto a x_{3}\right\}$ is only a solution for the first constraint system with $\sigma=\{x \mapsto B\}$, and

Example 2

$$
\begin{array}{ll}
a, b, \operatorname{enc}\left(n_{a}, k\right), & \vdash \operatorname{enc}(x, k) \\
a, b, \operatorname{enc}\left(n_{a}, k\right), \operatorname{enc}(\langle x, x\rangle, k), k & \vdash \operatorname{enc}\left(\left\langle n_{a}, n_{a}\right\rangle, k\right)
\end{array}
$$

```
a,b,\operatorname{enc}(\mp@subsup{n}{\textrm{a}}{0},k),}\quad\vdash\operatorname{enc}(x,k
a,b,\operatorname{enc}(\mp@subsup{n}{a}{},k),\operatorname{enc}(\langlex,x\rangle,k),\mp@subsup{k}{}{\prime}\vdash\operatorname{enc}(\langle\mp@subsup{n}{a}{},\mp@subsup{n}{a}{}\rangle,k)
```


Example 2

$$
\begin{array}{ll}
a, b, \operatorname{enc}\left(n_{a}, k\right), & \vdash \operatorname{enc}(x, k) \\
a, b, \operatorname{enc}\left(n_{a}, k\right), \operatorname{enc}(\langle x, x\rangle, k), k & \vdash \operatorname{enc}\left(\left\langle n_{a}, n_{a}\right\rangle, k\right)
\end{array}
$$

```
a,b,\operatorname{enc}(\mp@subsup{n}{\textrm{a}}{0},k),}\quad\vdash\operatorname{enc}(x,k
a,b,\operatorname{enc}(\mp@subsup{n}{a}{},k),\operatorname{enc}(\langlex,x\rangle,k),\mp@subsup{k}{}{\prime}\vdash\operatorname{enc}(\langle\mp@subsup{n}{a}{},\mp@subsup{n}{a}{}\rangle,k)
```


Non-equivalent

- A solution: $\sigma=\sigma^{\prime}=\left\{x \mapsto n_{a}\right\}$, and $\theta=\left\{X_{1} \mapsto a x_{3}, X_{2} \mapsto a x_{4}\right\}$
- $\phi \sigma \nsim \phi^{\prime} \sigma^{\prime}: \xi=f\left(\operatorname{dec}\left(a x_{3}, a x_{5}\right)\right), \xi^{\prime}=\operatorname{dec}\left(a x_{4}, a x_{5}\right)$

Definition and example

 How to use them ?
Outline

(1) Formalism

- Constraint Systems
- Equivalence
(2) The rules
- Definition and example
- How to use them ?
(3) Termination, Completeness and Soundness

General idea

- Input : two constraint systems : C and C^{\prime}
- Problem : is $C \approx_{s} C^{\prime}$?
- Reduce the problem to a finite conjunction of constraint systems equivalence :

$$
C_{1} \approx_{s} C_{1}^{\prime} \wedge \ldots \wedge C_{n} \approx_{s} C_{n}^{\prime}
$$

- Decidability of each $C_{i} \approx_{s} C_{i}^{\prime}$ has to be trivial

Definition and example

Guessing from the top

Constructor rule

Partition of the solution which ends or not by the application of a public constructor

Guessing from the top

Constructor rule

Partition of the solution which ends or not by the application of a public constructor

Definition and example

Guessing from the top

Constructor rule

Partition of the solution which ends or not by the application of a public constructor

Guessing from the bottom

Destructor rule

Partition of the solution where a cypher can be decrypt or not.

Guessing from the bottom

Destructor rule

Partition of the solution where a cypher can be decrypt or not.

Guessing from the bottom

Destructor rule

Partition of the solution where a cypher can be decrypt or not.

Outline

(1) Formalism

- Constraint Systems
- Equivalence
(2) The rules
- Definition and example
- How to use them ?
(3) Termination, Completeness and Soundness

Formalism

Definition and example

Application of the rules on a constraint systems couple

$$
\left\{\begin{array}{l}
A, B \vdash \operatorname{enc}(A, B) \\
C, D \vdash \operatorname{enc}(x, C)
\end{array}\right.
$$

Definition and example

Application of the rules on a constraint systems couple

$$
\left\{\begin{array}{l}
A, B \vdash \operatorname{enc}(A, B) \\
C, D \vdash \operatorname{enc}(x, C)
\end{array}\right.
$$

Application of the rules on a constraint systems couple

$$
\left\{\begin{array} { l }
{ A , B \vdash \operatorname { e n c } (A , B) } \\
{ C , D \vdash \operatorname { e n c } (x , C) }
\end{array} \left\{\begin{array}{l}
A, B \vdash A \\
A, B \vdash B \\
C, D \vdash x \\
C, D \vdash C
\end{array}\right.\right.
$$

Formalism

Definition and example

Application of the rules on a constraint systems couple

$$
\left\{\begin{array}{l}
A, B \vdash \operatorname{enc}(A, B) \\
C, D \vdash C
\end{array}\right.
$$

Application of the rules on a constraint systems couple

Application of the rules on a constraint systems couple

$$
\left\{\begin{array} { l }
{ A , B \vdash \operatorname { e n c } (A , B) } \\
{ C , D \vdash C }
\end{array} \left\{\begin{array}{l}
A, B \vdash A \\
A, B \vdash B \\
\perp
\end{array} \left\lvert\, \begin{array}{l}
A, B \vdash_{\text {NoCons }} \operatorname{enc}(A, B) \\
C, D \vdash_{\text {NoCons }} C
\end{array}\right.\right.\right.
$$

Formalism

Definition and example

Application of the rules on a constraint systems couple

$$
\left\{\begin{array}{l}
A, B \vdash \operatorname{enc}(A, B) \\
C, D \vdash x
\end{array}\right.
$$

Application of the rules on a constraint systems couple

Application of the rules on a constraint systems couple

Soundness and completeness

Theorem (Soundness)

If all leaves of a tree, whose root is labeled with $\left(C_{0}, C_{0}^{\prime}\right)$ (a pair of initial constraints), are labeled either with (\perp, \perp) or with some (C, C^{\prime}) with $C \neq \perp, C^{\prime} \neq \perp$, then $C_{0} \approx_{s} C_{0}^{\prime}$.

Soundness and completeness

Theorem (Soundness)

If all leaves of a tree, whose root is labeled with $\left(C_{0}, C_{0}^{\prime}\right)$ (a pair of initial constraints), are labeled either with (\perp, \perp) or with some (C, C^{\prime}) with $C \neq \perp, C^{\prime} \neq \perp$, then $C_{0} \approx_{s} C_{0}^{\prime}$.

Theorem (Completeness)

If $\left(C_{0}, C_{0}^{\prime}\right)$ is a pair of initial constraints such that $C_{0} \approx_{s} C_{0}^{\prime}$, then all leaves of a tree, whose root is labeled with $\left(C_{0}, C_{0}^{\prime}\right)$, are labeled either with (\perp, \perp) or with some $\left(C, C^{\prime}\right)$ with $C \neq \perp$ and $C^{\prime} \neq \perp$.

Termination problem

Consider the initial pair of contraints $\left(C, C^{\prime}\right)$ given below:

$$
C=\left\{\begin{array}{rlll}
a & \vdash \operatorname{enc}\left(x_{1}, x_{2}\right) \\
a, b & \vdash & x_{1}
\end{array} \quad C^{\prime}=\left\{\begin{array}{rll}
a & \vdash & y_{1} \\
a, b & \vdash & \operatorname{enc}\left(y_{1}, y_{2}\right)
\end{array}\right.\right.
$$

Termination problem

$$
\begin{gathered}
C_{1}=\left\{\begin{array}{rll}
a & \vdash & x_{1} \\
a & \vdash & x_{2} \\
a, b & \vdash & x_{1}
\end{array} \quad C_{1}^{\prime}=\left\{\begin{array}{rll}
a & \vdash & z_{1} \\
a & \vdash & z_{2} \\
a, b & \vdash & \text { enc }\left(\operatorname{enc}\left(z_{1}, z_{2}\right), y_{2}\right)
\end{array}\right.\right. \\
\text { with } y_{1} \stackrel{?}{=} \operatorname{enc}\left(z_{1}, z_{2}\right)
\end{gathered}
$$

Termination problem

$C_{1}=\left\{\begin{array}{rll}a & \vdash & \text { enc }\left(t_{1}, t_{2}\right) \\ a & \vdash & x_{2} \\ a, b & \vdash & t_{1} \\ a, b & \vdash & t_{2}\end{array}\right.$
with $x_{1} \stackrel{?}{=} \operatorname{enc}\left(t_{1}, t_{2}\right)$
$C_{1}^{\prime}=\left\{\begin{array}{rll}a & \vdash & z_{1} \\ a & \vdash & z_{2} \\ a, b & \vdash & \operatorname{enc}\left(z_{1}, z_{2}\right) \\ a, b & \vdash & y_{2}\end{array}\right.$
with $y_{1} \stackrel{?}{=} \operatorname{enc}\left(z_{1}, z_{2}\right)$

Termination theorem

Theorem

There exists a strategy on the rules which terminates.

Demo

Demo

Future Works

Theory

(1) Extension to non positive constraint systems (Ongoing work)
(2) Extension to symbolic equivalence of constraint system set (Ongoing work)
(3) Extension to trace equivalence of non deterministic protocol (Ongoing work)
(4) Other cryptographic primitives

Implementation

(1) Symbolic equivalence of positive constraint systems (Done)
(2) Trace equivalence of positive protocol (Done but not efficient)

